Electric vehicles
Tesla's Model X electric car has a 100kWh battery that provides a range of 351 miles. |
Contents |
[edit] Introduction
Electric vehicles (EVs) are typically cars, although they can be motorcycles, trains, buses, trams, trucks, aircraft, ships, submarines and other vehicle types. They may have one or more motors powered by electric batteries, as opposed to an internal combustion engine.
[edit] Benefits and drawbacks
Compared to petrol-driven varieties, electric vehicles tend to be quieter, cheaper to run and have no exhaust emissions, however the carbon footprint will depend on how the electricity driving the vehicle has been generated. Electricity derived from wind, tidal and solar has a better carbon footprint than that generated from fossil fuels.
Potential drawbacks of EVs include relatively high purchase costs, limited choice of models, battery life and replacement costs, and lower range compared to petrol-driven vehicles.
[edit] Charging methods
Batteries can be recharged either by off-vehicle electricity sources or integrated sources such as solar panels and fuel cells. Lithium-ion (Li-Ion) batteries are generally the predominant type used for EVs as they are longer lasting and have a higher energy- and power-density than most other battery types. Li-Ions have superceded the earlier and pricier nickel metal hydride batteries due to the latter’s tendency to lose charge in heat.
Cars recharged from external electricity sources are known as plug-in electric vehicles (PEVs), with the Nissan Leaf being the world’s top-selling model (2018). Cars that combine conventional fuel-powered engines with electric propulsion are known as hybrid electric vehicles (HEVs), a market dominated by Japan followed by the US and Europe.
In the UK, the 12 months to December 2018 saw a dramatic slowdown in sales of electric cars which is undermining government plans to cut roadside emissions. This is attributed to factors, including public scepticism over safety issues, a lack of charging points, few affordable models, cuts in green car incentives by the UK government and sluggish progress in EV roll-out.
[edit] Automated vehicles
EV technology lends itself more readily to automation than conventional technology and this has generated much interest in autonomous vehicles (AVs). There are varying levels of automation for road vehicles: fully autonomous, where the AV can complete journeys safely without a driver in normally-encountered traffic conditions, and highly automated, where the vehicle can operate in driverless mode but must have a driver on-board to take control if necessary.
AVs will potentially transform cities due to zero exhaust emissions, safer roads, fewer accidents, less congestion and smoother traffic flow, with extensive freeing-up of conventional parking space. It could also bring about changes in car ownership patterns and raise questions in terms of insurance. If an accident occurs with a fully autonomous vehicle, who is responsible? The vehicle provider, the manufacturer or the software developer?
[edit] Progress
In July 2019, the government launched a consultation on proposals to alter existing residential and non-residential buildings regulations to include electric vehicle infrastructure requirements. Ref https://www.gov.uk/government/consultations/electric-vehicle-chargepoints-in-residential-and-non-residential-buildings
NB Making Mission Possible - Delivering A Net-Zero Economy, published by the Energy Transitions Commission (ETC) in September 2020, suggests a fuel cell electric vehicle (FCEV) is an: ‘Electric vehicle using a fuel cell generating electricity to power the motor, generally using oxygen from the air and compressed hydrogen.’
[edit] Related articles on Designing Buildings
- Autonomous vehicles.
- Battery electric vehicle.
- Boosting electric vehicle use.
- Drivers uncertain over electric vehicles.
- ECA and UKPN launch EV guide.
- ECA backs joint rail electrification statement.
- ECA calls for urgent energy price reform.
- ECA warns lack of EV strategy could leave UK divided.
- Electric car charging stations - what you need to know.
- Electric vehicles in 2021.
- Electricity.
- Fuel.
- Fuel cells.
- Hybrid electric vehicle.
- Hydrogen fuel cell electric vehicle.
- Key notes on electric car charging points.
- London car charging infrastructure.
- New style EV charging stations.
- Opportunities for EV charging.
- Pop-up electric vehicle charge points.
- Transport Decarbonisation Plan.
- Two thirds of local authorities have no plans to install EV chargers.
- Vehicle to grid.
- Zero-emissions vehicles.
Featured articles and news
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.
Comments